skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kapila, Shubhender"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Identifying new catalyst composition for carbon dioxide electroreduction to high-value products has been the center of attraction over the last several years. In this article, nickel selenide (NiSe 2 ) has been identified as a high-efficiency electrocatalyst for CO 2 electroreduction at neutral pH. Interestingly, NiSe 2 shows high selectivity towards specific reduction products, forming carbon-rich C2 products like ethanol and acetic acid exclusively at lower applied potential with 98.45% faradaic efficiency, while C1 products formic acid and carbon monoxide formed preferentially at higher applied potential. More importantly, the C2 products such as acetic acid and ethanol are obtained at very low applied potential, which further corroborates the novelty of this catalyst in CO 2 utilization with minimal energy expense. The NiSe 2 catalyst surface has been studied through density functional theory calculations which show that the adsorption energy of the CO intermediate on the NiSe 2 surface is optimal for extensive reduction through formation of C–C bonds but not strong enough for surface passivation, thus leading to high selectivity for C2 products. Such high efficiency of the catalyst can be a result of increased covalency of the selenide anion along with a high d-electron density of the Ni center. The hydrothermally synthesized NiSe 2 sample also shows high activity for oxygen evolution through electrocatalytic water splitting in alkaline medium, effectively making it a bifunctional catalyst which can lower the concentration of the atmospheric pollutant CO 2 while at the same time enriching the air with O 2 . 
    more » « less
  2. null (Ed.)